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Hard Problems and Cryptography

• A problem is hard if no polynomial time 
algorithm is known to solve it

• The hardness is categorized by computing 
complexity, e.g. P and NP

• Practically, it means that it is infeasible to solve it 
with the currently available computing resource

• The hardness on certain problems is used as the 
basic assumptions for some cryptographic 
schemes



Cryptography
• Symmetric key cryptography 

algorithms use the same “secret” 
key for the sender to encrypt and 
for the receiver to decrypt
– Key distribution had been a  

challenge 
• Asymmetric key cryptography 

algorithms, a.k.a. public key 
cryptography algorithms use a 
pair of keys: a public key and a 
private key
– The sender uses the receiver’s 

public key to encrypt and the 
receiver uses the private key to 
decrypt

– The public key is public, which 
resolved the key distribution 
issue
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Why Asymmetric Key IS Secure?
• It is easy to understand that for 

symmetric key based cryptographic 
schemes, as long as the keys are kept 
secret, it shall be secure up to the 
strength provided by the key

– Not necessarily, dedicated cryptanalysis 
may break a not well-designed 
cryptosystem with certain amount of 
plaintext and cipher-text pairs with less 
than the effort as made in exhaustive 
search 

• For asymmetric key based cryptosystem, 
how could we know that from the public 
key it is infeasible to obtain the private 
key? 

– The security of a public key crypto scheme 
is based on computationally hard 
problems to make sure it is hard to obtain 
private key from public key
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Integer Factorization and RSA Cryptosystem

• Given two primes p and q, it is 
easy to compute n = p⋅q

• Given an integer n, it is hard to 
find p and q such that p⋅q = n

• No algorithm has been published 
that can factor all integers in 
polynomial time

• The best algorithm of factorization 
is the special number field sieve 
(SNFS) with complexity
exp ((c+o(1))(log n)1/3 (log log n)2/3)

• The 2009 factorization of a 768-bit 
integer n took roughly a year on 
2000 cores running at 2GHz.

RSA Encryption Algorithm*

Public key (n, e), where 
• n, an integer, a product of two primes p and 

q. 
• e, an integer such that (e, φ(n)) = 1, where

φ(n) is Euler’s Totient function
Private key (n, d):
• d such that  e⋅d ≡ 1 mod φ(n)

Encryption: For plaintext M, an integer 
C ≡ Me mod n

Decryption: For ciphertext C, an integer
M ≡ Cd mod n

Notice that e⋅d≡1 mod φ (n) implies 
e⋅d = k⋅φ(n) + 1 

for some integer k. Because Mφ(n) ≡ 1 mod n, 
Cd≡ Mk⋅φ(n) + 1 ≡ (Mφ(n))k ⋅ M ≡ M mod n.

*Textbook version



Digital Signatures

• Digital signatures
– The private key is used to 

generate the signature
– The public key is used to 

verify the signature

(M, SigA(M))

SigA(M) = Sig(skA , M) v = Veri(pkA, M, SigA(M))

v = “valid” or “invalid”

(pkA, skA) pkA

A B

Digital signature: A is a signer and B a verifier

RSA Signature*

Public key (n, e), where 
• n, an integer, a product of two primes p

and q. 
• e, an integer such that (e, φ(n)) = 1

Private key (n, d):
• d such that  e⋅d ≡ 1 mod φ(n)

Signing: For message M and a hash function H
Sig (M) ≡ H(M)d mod n

Verification: For Sign(M), The verifier 
computes H(M) and verify whether 

H(M) ≡ Sig(M)e mod n

*Textbook version



Discrete Logarithm Problem

• Assume that G is a multiplicative subgroup of GF(p)* for prime p
• G is a cyclic group, G = {1, g, g2, g3, …,gq-1}, where q is a prime and g is 

called a generator 
– Given an integer x, 1< x <q, it is easy to compute gx ≡ y mod p (in GF(p))
– Given y ∈G, it is hard to find an integer x such that gx ≡ y mod p

• Using number field sieve method, the complexity of discrete log in GF(p) is 
estimated by 

exp ((c+o(1))(log p)1/3 (log log p)2/3)
• Since the operation is in a subgroup,  it is also determined by the subgroup 

size q. By Pohlig-Hellman algorithm, the complexity is in the square root of 
q, 𝑞𝑞

• Discrete logarithm problem over elliptic curve groups can also be used for 
PKC schemes
– A curve can be over GF(p) or GF(2q)
– An order n subgroup of EC(GF(p)) or EC(GF(2q)) is used, where n is a 

prime 



Diffie-Hellman Key Agreement
Diffie-Hellman Key Agreement

Alice and Bob can publically negotiate a set of 
parameters, p, q, and g, where p and q are 
primes and G is a q-order subgroup of GF(p)* 
and g is a generator of G.  

1. Alice randomly selects a, 1< a < q, and 
computes

YA ≡ ga mod p
2. Bob randomly selects b, 1 < b < q and 

computes
YB ≡ gb mod p

3. Alice and Bob exchange YA and YB
4. Alice computes 

KA = (YB)a ≡ gba mod p
5. Bob computes 

KB = (YA)b ≡ gab mod p
Without secret channel, Alice and Bob agreed on 
a key K = KA = KB.

Alice Bob

ga

gb

K = (ga)bK = (gb)a

a, ga

b, gb

• Computational Diffie-Hellman problem 
(CDH)

– Given G ⊂ GF(p)*, generator g, X ≡ gx, Y ≡ gy, 
compute Z ≡ gxy mod p.

• Decisional Diffie-Hellman Problem (DDH)
− Given G ⊂ GF(p)*, generator g, X ≡ gx, Y ≡ gy, 

and Z ∈ G, determine whether Z ≡ gxy mod p.

It is not proved that CDH (or DDH) is equivalent to 
discrete logarithm.



PKC Applications and Standardizations

• Two classes of PKC schemes have been widely deployed
– Discrete log based (e.g. DH, DSA, ECDH, ECDSA)
– Integer factorization based (RSA encryption, RSA signature)

• NIST has specified digital signatures in FIPS 186-4, discrete log 
based key agreement like DH in SP 800-56A, and RSA key transport 
in SP 800-56B
– These standards are developed for government non-classified 

applications
• The major schemes are standardized by many standard 

organizations, ISO, IEEE, IETF, ANSI, etc.
• We have been relying on PKC to protect data in transmit and in 

storage
– For protect Internet traffic as in Internet Key Exchange (IKE)
– For protect Internet applications as in Transport Layer Security (TLS)



Not Every Hard Problem Can Make a Good PKC
• Although the problem is hard to solve, 

which provides one-wayness, it needs a 
way to use some trapdoor (private 
information) to generate the private key 

• The mathematics structure needs to be 
useable for a public key system to get a 
“invertible” mathematical transmission

• It should have a manageable size for a 
targeted security strength. 

• To make the PKC system secure, worst case 
to average case reduction is needed 

– The notion of hard problems is based on 
worst-case analysis alone, whereas not 
every instance of a hard problem is 
necessarily hard

– A cryptographic system based on a subclass 
of a hard problem will not be secure if the 
particular subclass turns out to be easy to 
solve 

• It is not always straightforward to base a 
cryptosystem on a hard problem 

112 bit security

RSA n ≥ 2048

DH p ≥ 2048 q ≥ 224

ECDH G in GF(p) |G|≥ 224

128 bit security

RSA n ≥ 3073

DH p ≥ 3072 q ≥ 256

ECDH G in GF(p) |G|≥ 256

RSA n ≥ 15360

DH p ≥ 15360 q ≥ 512

ECDH G in GF(p) |G|≥ 512

256 bit security



Hardness and Computing Power

• Moore’s law
– Over the history of computing hardware, the number of transistors in 

a dense integrated circuit doubles approximately every 18 months 
• The techniques in computing discrete log and factorization have been 

continuously advanced
• As a result, in about 20 years

– RSA public key size has increased from 512 bits to 2048 bits
– Discrete log based system has increased the prime field modular p to 

be at least 2048 bits and subgroup order q at least to be 448 bits
• Advanced computing power can make infeasible be feasible with respect 

to certain key lengths 



Quantum Computing Technology
• Quantum computing changed what we have believed infeasible

– On a quantum computer, to factor an integer n, Shor's algorithm runs in 
polynomial time 

O((log n)2(log log n)(log log log n)) 
– The discrete logarithm problem can be solved in the same scale of the 

complexity 
• With such results, all the public key cryptosystems deployed since 1980s 

must be replaced with the quantum resistance counterparts in the 
quantum computing time

• The first step is to look for proper hard problems which are 
computationally infeasible to be solved even by quantum computers 



Quantum Computing Resistant PKC

• Some hard problems are considered as quantum computing resistant and 
also can be used to form public key cryptosystems, including
– Lattice based
– Multivariate
– Hash based*
– Coding based, and
– More

• Many different schemes have been proposed in each category
– Each of the schemes is based on a specific hard problem with respect 

to quantum computing (i.e. quantum computing resistant)
• Most of the quantum computing resistant PKC schemes have appeared in 

the past 10 years



Hard Problems – Lattice Based
• Different hard problems in lattice have been 

used in constructing cryptosystems
– Classical hard problems

• Shortest Vector Problem (SVP) 
– Given a basis, find a shortest vector

• Closest Vector Problem (CVP)) 
– Given a basis and a target vector t (or 

a d-rank lattice L), find the closest 
lattice point to t

– Approximation version of SVP and CVP 
– Additional 

• Decisional Shortest Vector Problem 
(GapSVP) 

• Bounded Distance Decoding (BDD) 
• Small Integer Solutions (SIS) 
• Shortest Independent Vector Problem 

(SIVP) 
• Learning With Errors (LWE) 

• These problems are variants or special cases of 
other lattice problems 

• There exists reduction relations between some 
of the problems

• Different lattice based crypto systems have been 
built based on different hard problems

Lattice: Given a basis v1, v2, …, vn in Rn, the 
lattice L = L (v1, v2, …, vn) is 

{ v | v = a1v1+ a2v2 + … +  anvn, ai in Z, i = 1, 2, …, n}

The length of v is defined as
||v||= (a1

2 + a2
2 + … + an

2)1/2 

v1 v2 2v2-v1

2v2-2v1



Early Lattice-based Crypto Schemes

• Ajtai and Dwork (1995) described a lattice-based public key cryptosystem 
– The security proof showed that every instance of the unique shortest 

vector problem could be transformed into a random instance of their 
cryptosystem with high probability

– It encrypts one bit for each operation, not practical
• Goldreich, Goldwasser, and Halevi (1996) proposed a more practical 

lattice-based cryptosystem (GGH)
– GGH is fast, but requires megabyte-size public keys to be secure

 NTRU was presented in 1996 by Hoffstein, Pipher and Silverman, that only 
requires RSA-sized keys, NTRU stands for 
– “N-th degree truncated polynomial ring” or
– Number Theorists “R” Us



NTRUEncrypt

• It is typically described using the 
ring of convolution polynomials
– Polynomial ring R = Z[X]/Xn-1, 

where each element is an n-1 
degree polynomial over Z

• Convolution products of 
polynomials can also be expressed 
as the multiplication with a 
circulate matrix
– It is possible to describe NTRU 

using lattices 
– Its security is related to the 

hardness of lattice problems in 
a very special class of lattices

Public parameters n, p, q, where q > p

1. Randomly generate two polynomials f and 
g in R

2. Computer fq
-1such that fq-1•f = 1 mod q

and fp
-1such that fp

-1•f = 1 mod p.

Public key:    h = pfq
-1g mod q

Private key:   f 

Message m = m0+ m1x + … +  mn-1xn-1

(-p/2 < mi < p/2, i = 0, 1, …, n-1)

Encryption: select r in R at random, the 
ciphertext is

e ≡ r  h + m mod q
Decryption: For ciphertext e, compute

a ≡ f e mod q
b ≡ a mod p 

m ≡ f -1p b mod p



More on NTRU
• Its security is related to SVP in NTRU 

lattice
• It is not provably secure, that is, it 

cannot be proved that “breaking” 
NTRUencrypt is equivalent to solving 
SVP in NTRU lattice

• Its provably secure version is less 
efficient

• Computationally, NTRUencrypt is a 
pretty efficient scheme 

• NTRU version of signature has had 
multiple versions, after one version is 
broken and then another
– Converting NTRUencrypt to a digital 

signature is not as straight forward as 
RSA

Security level n p q

112 bits 347 3 128

126 bits 503 3 256

NTRU Lattice

Public key  h = h0+ h1x + … +  hn-1xn-1

Let n x n matrix H is a cyclic matric with
C i(h0, h1, …, hn-1)T as the column 1, 2, …, n, 
where C is cyclic shift operation

NTRU lattice is spanned by the columns of 
2n x 2n matrix 

In On

H qIn

where In is the n × n identity matrix and On is 
the n × n all-zero matrix. 



The Major Challenges

• Security analysis against traditional computers
– Is it secure to against cryptanalysis?

• Security analysis against quantum computers
– Will a new quantum algorithm solve the underlying problem? 

• Performance assessment and improvement for practical 
usage
– Proper key size, ciphertext size, and signature size

• Smooth migration to quantum resistant PKC schemes in 
the existing applications
– Pursue drop-in replacement and interoperability



NIST PQC Research
• Security analysis against attacks

– Engage with crypto research community
– Focus on security of existing schemes
– Understand practical implications of various analysis results

• Prepare for quantum time cyber security 
– Contribute to standard activities 

• e.g. European Telecommunications Standards Institute (ETSI) white 
paper “Quantum Safe Cryptography and Security - An introduction, 
benefits, enablers and challenges”

– Hosted “Workshop on Cybersecurity in a Quantum World” April 2-3, 
2015 in NIST Gaithersburg, Maryland 



Conclusion

• Finding proper hard problems for 
cryptographic usage is a hard problem

• The major challenge is to look for problems 
infeasible to solve but feasible to be used to 
form a cryptosystem

• As mathematicians, this is a fun area to 
explore 
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