Feasibility & Infeasibility

- Hard problems for cryptography

Lily Lidong Chen
Computer Security Division, NIST

Hard Problems and Cryptography

A problem is hard if no polynomial time
algorithm is known to solve it

The hardness is categorized by computing
complexity, e.g. P and NP

Practically, it means that it is infeasible to solve it
with the currently available computing resource

The hardness on certain problems is used as the
basic assumptions for some cryptographic
schemes

NIST

Cryptography

Symmetric key encryption

* Symmetric key cryptography

algorithms use the same “secret”
key for the sender to encrypt and
for the receiver to decrypt | ,

C
— Key distribution had been a y * B
challenge
* Asymmetric key cryptography C = E(kys, P) P =Dk, O

algorithms, a.k.a. public key
cryptography algorithms use a
pair of keys: a public key and a

Asymmetric key encryption

private key

— The sender uses the receiver’s
public key to encrypt and the
receiver uses the private key to
decrypt ' ¢

— The public key is public, which A
resolved the key distribution
issue C = E(pk, P) P = D(skg, C)

NIST

Why Asymmetric Key IS Secure?

It is easy to understand that for

symmetric key based cryptographic

schemes, as long as the keys are kept

secret, it shall be secure up to the

strength provided by the key

— Not necessarily, dedicated cryptanalysis

may break a not well-designed
cryptosystem with certain amount of
plaintext and cipher-text pairs with less
than the effort as made in exhaustive
search

For asymmetric key based cryptosystem,
how could we know that from the public
key it is infeasible to obtain the private
key?
— The security of a public key crypto scheme
is based on computationally hard

problems to make sure it is hard to obtain
private key from public key

M M
)]
EK DK
! I
C C
Pk
easy hard
sky

NIST

Integer Factorization and RSA Cryptosystem

Given two primes p and g, it is RSA Encryption Algorithm*

easy to compute n = p-q Public key (n, e), where

Given an integer n, itis hard to * n, aninteger, a product of two primes p and
. q.

find p and g such that p-g=n * e, an integer such that (e, ¢(n)) = 1, where
No algorithm has been published AilSENE et EnBInEtioh

_ i Private key (n, d):
that can factor all integers in « dsuchthat e-d=1mod (n)

polynomial time
. . . Encryption: For plaintext M, an integer
The best algorithm of factorization C=Memod n

is the special number field sieve Secrvotion: For ciopartegt €. an int
. . ecr on: FOr Ci ertext C, an integer
(SNFS) with complexity e F,i/,ECdmod,., ;
+o(1))(log n)¥3 (log log n)?/?
exp ((C O())(°8 n) (08 108 n)) Notice that e-d=1 mod ¢ (n) implies
The 2009 factorization of a 768-bit e-d=kgn) +1
integer n took roughly a year on for some integer k. Because MA" =1 mod n,

i Cd= Mk +1= (A . M = M mod n.
2000 cores running at 2GHz.

*Textbook version

. s

Digital Signatures

* Digital signatures

— The private key is used to
generate the signature

— The public key is used to
verify the signature

Digital signature: A is a signer and B a verifier

(M, Sig,(M))

Sigy(M) = Sig(sk,, M) v = Veri(pk,, M, Sig,(M))

v = “valid” or “invalid”

RSA Signature*

Public key (n, e), where

* n,aninteger, a product of two primes p
and gq.

* e, aninteger such that (e, #n)) =1

Private key (n, d):
* dsuchthat e-d=1 mod ¢n)

Signing: For message M and a hash function H
Sig (M) =H(M)? mod n

Verification: For Sign(M), The verifier
computes H(M) and verify whether

H(M) = Sig(M)¢ mod n

*Textbook version

NIST

Discrete Logarithm Problem

Assume that G is a multiplicative subgroup of GF(p)* for prime p
G is a cyclic group, G =11, g, g%, g3, ...,g%'}, where g is a prime and g is
called a generator

— Given aninteger x, 1< x <g, it is easy to compute g*=y mod p (in GF(p))

— Giveny €G, itis hard to find an integer x such that g*=y mod p
Using number field sieve method, the complexity of discrete log in GF(p) is
estimated by

exp ((c+o(1))(log p)*/3 (log log p)*/3)

Since the operation is in a subgroup, itis also determined by the subgroup
size g. By Pohlig-Hellman algorithm, the complexity is in the square root of

a9, \q

Discrete logarithm problem over elliptic curve groups can also be used for
PKC schemes

— A curve can be over GF(p) or GF(29)

— An order n subgroup of EC(GF(p)) or EC(GF(29)) is used, where n is a
prime

NIST

Diffie-Hellman Key Agreement

Diffie-Hellman Key Agreement

Alice and Bob can publically negotiate a set of
parameters, p, g, and g, where p and g are
primes and G is a g-order subgroup of GF(p)*
and g is a generator of G.

1. Alice randomly selects a, 1<a < q, and

computes
Y,=g°modp
2. Bobrandomly selects b, 1<b< g and
computes
Y;=g’mod p

Sl

Alice and Bob exchange Y, and Y,
4. Alice computes
K,=(Yg)® =g*mod p
5. Bob computes
Kg = (Y,)? =g% mod p
Without secret channel, Alice and Bob agreed on
akey K=K, =Kj.

Alice Bob
g°
a, g° >
) g° b, g°
K = (gb)°) K= (g°)

Computational Diffie-Hellman problem
(CDH)

— Given G c GF(p)*, generatorg, X=¢g* Y=¢’,
compute Z= g mod p.

Decisional Diffie-Hellman Problem (DDH)

— Given G c GF(p)*, generatorg, X=g*, Y=¢,
and Z € G, determine whether Z= g mod p.

It is not proved that CDH (or DDH) is equivalent to
discrete logarithm.

PKC Applications and Standardizations

Two classes of PKC schemes have been widely deployed
— Discrete log based (e.g. DH, DSA, ECDH, ECDSA)
— Integer factorization based (RSA encryption, RSA signature)

NIST has specified digital signatures in FIPS 186-4, discrete log
based key agreement like DH in SP 800-56A, and RSA key transport
in SP 800-56B

— These standards are developed for government non-classified
applications

The major schemes are standardized by many standard
organizations, ISO, IEEE, IETF, ANSI, etc.

We have been relying on PKC to protect data in transmit and in
storage

— For protect Internet traffic as in Internet Key Exchange (IKE)
— For protect Internet applications as in Transport Layer Security (TLS)

o e
[/

NIST

Not Every Hard Problem Can Make a Good PKC

Although the problem is hard to solve,
which provides one-wayness, it needs a
way to use some trapdoor (private
information) to generate the private key

The mathematics structure needs to be
useable for a public key system to get a
“invertible” mathematical transmission

It should have a manageable size for a
targeted security strength.

To make the PKC system secure, worst case
to average case reduction is needed

— The notion of hard problems is based on
worst-case analysis alone, whereas not
every instance of a hard problem is
necessarily hard

— A cryptographic system based on a subclass
of a hard problem will not be secure if the
particular subclass turns out to be easy to
solve

It is not always straightforward to base a
cryptosystem on a hard problem

112 bit security

RSA n> 2048

DH p =2 2048 q=224
ECDH | Gin GF(p) | |G|=224
128 bit security

RSA n 23073

DH p = 3072 q =256
ECDH | Gin GF(p) | |G|2256
256 bit security

RSA n 215360

DH p 215360 |qg=>512
ECDH | Gin GF(p) | |G|=2512

NIST

Hardness and Computing Power

Moore’s law

— Over the history of computing hardware, the number of transistors in
a dense integrated circuit doubles approximately every 18 months

The techniques in computing discrete log and factorization have been
continuously advanced

As a result, in about 20 years
— RSA public key size has increased from 512 bits to 2048 bits

— Discrete log based system has increased the prime field modular p to
be at least 2048 bits and subgroup order g at least to be 448 bits

Advanced computing power can make infeasible be feasible with respect
to certain key lengths

NIST

Quantum Computing Technology

Quantum computing changed what we have believed infeasible

— On a quantum computer, to factor an integer n, Shor's algorithm runs in
polynomial time

O((log n)?*(log log n)(log log log n))
— The discrete logarithm problem can be solved in the same scale of the
complexity

With such results, all the public key cryptosystems deployed since 1980s
must be replaced with the quantum resistance counterparts in the
quantum computing time

The first step is to look for proper hard problems which are
computationally infeasible to be solved even by quantum computers

NIST

Quantum Computing Resistant PKC

Some hard problems are considered as quantum computing resistant and
also can be used to form public key cryptosystems, including

— Lattice based
— Multivariate
— Hash based*
— Coding based, and
— More
Many different schemes have been proposed in each category

— Each of the schemes is based on a specific hard problem with respect
to quantum computing (i.e. quantum computing resistant)

Most of the quantum computing resistant PKC schemes have appeared in
the past 10 years

NIST

?ﬁo

Hard Problems — Lattice Based

Different hard problems in lattice have been
used in constructing cryptosystems

— Classical hard problems
* Shortest Vector Problem (SVP)
— Given a basis, find a shortest vector
* Closest Vector Problem (CVP))

— Given a basis and a target vector t (or
a d-rank lattice L), find the closest
lattice point to t

— Approximation version of SVP and CVP
— Additional

e Decisional Shortest Vector Problem
(GapSVP)

* Bounded Distance Decoding (BDD)
* Small Integer Solutions (SIS)

* Shortest Independent Vector Problem
(SIVP)

* Learning With Errors (LWE)

These problems are variants or special cases of
other lattice problems

There exists reduction relations between some
of the problems

Different lattice based crypto systems have been
built based on different hard problems

72

Lattice: Given a basis v,, v,, ..., v, in R", the
lattice L=L (v, V5, ..., v,)) is

{vlv=awv,+av,+..+ av,ainZi=1,2, .. n}

n“n’

The length of v is defined as
|Iv]|=(a,2+ a2+ ...+ a,2)/?

Early Lattice-based Crypto Schemes

Ajtai and Dwork (1995) described a lattice-based public key cryptosystem

— The security proof showed that every instance of the unique shortest
vector problem could be transformed into a random instance of their
cryptosystem with high probability

— It encrypts one bit for each operation, not practical

Goldreich, Goldwasser, and Halevi (1996) proposed a more practical
lattice-based cryptosystem (GGH)

— GGH is fast, but requires megabyte-size public keys to be secure

NTRU was presented in 1996 by Hoffstein, Pipher and Silverman, that only
requires RSA-sized keys, NTRU stands for

— “N-th degree truncated polynomial ring” or
— Number Theorists “R” Us

NIST

NTRUENcrypt

It is typically described using the
ring of convolution polynomials
— Polynomial ring R = Z[X]/X"-1,
where each element is an n-1
degree polynomial over Z

Convolution products of
polynomials can also be expressed
as the multiplication with a
circulate matrix

— Itis possible to describe NTRU
using lattices

— Its security is related to the
hardness of lattice problems in
a very special class of lattices

Public parameters n, p, g, where g > p

1.

Public key: h=pf,'*gmod g
Private key: f

Message m = mg+ mx + ... + m__x"1
(-p/2<m;<p/2,i=0,1, .., n-1)

Encryption: select rin R at random, the
ciphertext is

Decryption: For ciphertext e, compute

Randomly generate two polynomials f and
ginR

Computer f,*such that ff'ef=1 mod g
and f,'such that f ef=1 mod p.

e=r*h+mmodgq

a=f’emodqg
b= amodp
m=f-1 ebmodp

NIST

More on NTRU

Its security is related to SVP in NTRU
lattice
* |tis not provably secure, that is, it
cannot be proved that “breaking”

NTRUencrypt is equivalent to solving
SVP in NTRU lattice

* Its provably secure version is less
efficient

Computationally, NTRUencrypt is a
pretty efficient scheme

NTRU version of signature has had
multiple versions, after one version is
broken and then another

— Converting NTRUencrypt to a digital

signature is not as straight forward as
RSA

NTRU Lattice

Publickey h=hg+hx+ ...+ h x"!

Let n x n matrix H is a cyclic matric with
C'(hy, hy, ..., h, ;)" @s the column 1, 2, ..., n,
where Cis cyclic shift operation

NTRU lattice is spanned by the columns of
2n X 2n matrix

I, O

n n

H ql,

where [is the n x n identity matrix and O, is
the n x n all-zero matrix.

Security level n p q
112 bits | 347 | 3 | 128
126 bits | 503 | 3 | 256 | (NJISST

The Major Challenges

* Security analysis against traditional computers
— |s it secure to against cryptanalysis?

e Security analysis against qguantum computers

— Will a new quantum algorithm solve the underlying problem?

* Performance assessment and improvement for practical
usage
— Proper key size, ciphertext size, and signature size
* Smooth migration to quantum resistant PKC schemes in
the existing applications
— Pursue drop-in replacement and interoperability

=)

Q-Z

NIST

NIST PQC Research

Security analysis against attacks

— Engage with crypto research community

— Focus on security of existing schemes

— Understand practical implications of various analysis results
Prepare for quantum time cyber security

— Contribute to standard activities

e e.g. European Telecommunications Standards Institute (ETSI) white
paper “Quantum Safe Cryptography and Security - An introduction,
benefits, enablers and challenges”

— Hosted “Workshop on Cybersecurity in a Quantum World” April 2-3,
2015 in NIST Gaithersburg, Maryland

NIST

Conclusion

* Finding proper hard problems for
cryptographic usage is a hard problem

* The major challenge is to look for problems
infeasible to solve but feasible to be used to

form a cryptosystem

* As mathematicians, this is a fun area to
explore

W
. N

NIST

	Feasibility & Infeasibility�- Hard problems for cryptography
	Hard Problems and Cryptography
	Cryptography
	Why Asymmetric Key IS Secure?
	Integer Factorization and RSA Cryptosystem
	Digital Signatures
	Discrete Logarithm Problem
	Diffie-Hellman Key Agreement
	PKC Applications and Standardizations
	Not Every Hard Problem Can Make a Good PKC
	Hardness and Computing Power
	Quantum Computing Technology
	Quantum Computing Resistant PKC
	Hard Problems – Lattice Based
	Early Lattice-based Crypto Schemes
	NTRUEncrypt
	More on NTRU
	The Major Challenges
	NIST PQC Research
	Conclusion

