
Feasibility & Infeasibility
- Hard problems for cryptography

Lily Lidong Chen
Computer Security Division, NIST

Hard Problems and Cryptography

• A problem is hard if no polynomial time
algorithm is known to solve it

• The hardness is categorized by computing
complexity, e.g. P and NP

• Practically, it means that it is infeasible to solve it
with the currently available computing resource

• The hardness on certain problems is used as the
basic assumptions for some cryptographic
schemes

Cryptography
• Symmetric key cryptography

algorithms use the same “secret”
key for the sender to encrypt and
for the receiver to decrypt
– Key distribution had been a

challenge
• Asymmetric key cryptography

algorithms, a.k.a. public key
cryptography algorithms use a
pair of keys: a public key and a
private key
– The sender uses the receiver’s

public key to encrypt and the
receiver uses the private key to
decrypt

– The public key is public, which
resolved the key distribution
issue

A B
C

C = E(kAB , P) P = D(kAB , C)

kABkAB

C = E(pkB, P) P = D(skB, C)

(pkB, skB)pkB

A B
C

Symmetric key encryption

Asymmetric key encryption

Why Asymmetric Key IS Secure?
• It is easy to understand that for

symmetric key based cryptographic
schemes, as long as the keys are kept
secret, it shall be secure up to the
strength provided by the key

– Not necessarily, dedicated cryptanalysis
may break a not well-designed
cryptosystem with certain amount of
plaintext and cipher-text pairs with less
than the effort as made in exhaustive
search

• For asymmetric key based cryptosystem,
how could we know that from the public
key it is infeasible to obtain the private
key?

– The security of a public key crypto scheme
is based on computationally hard
problems to make sure it is hard to obtain
private key from public key

easy hard

pkB

skB

EK

M

C

DK

M

C

Integer Factorization and RSA Cryptosystem

• Given two primes p and q, it is
easy to compute n = p⋅q

• Given an integer n, it is hard to
find p and q such that p⋅q = n

• No algorithm has been published
that can factor all integers in
polynomial time

• The best algorithm of factorization
is the special number field sieve
(SNFS) with complexity
exp ((c+o(1))(log n)1/3 (log log n)2/3)

• The 2009 factorization of a 768-bit
integer n took roughly a year on
2000 cores running at 2GHz.

RSA Encryption Algorithm*

Public key (n, e), where
• n, an integer, a product of two primes p and

q.
• e, an integer such that (e, φ(n)) = 1, where

φ(n) is Euler’s Totient function
Private key (n, d):
• d such that e⋅d ≡ 1 mod φ(n)

Encryption: For plaintext M, an integer
C ≡ Me mod n

Decryption: For ciphertext C, an integer
M ≡ Cd mod n

Notice that e⋅d≡1 mod φ (n) implies
e⋅d = k⋅φ(n) + 1

for some integer k. Because Mφ(n) ≡ 1 mod n,
Cd≡ Mk⋅φ(n) + 1 ≡ (Mφ(n))k ⋅ M ≡ M mod n.

*Textbook version

Digital Signatures

• Digital signatures
– The private key is used to

generate the signature
– The public key is used to

verify the signature

(M, SigA(M))

SigA(M) = Sig(skA , M) v = Veri(pkA, M, SigA(M))

v = “valid” or “invalid”

(pkA, skA) pkA

A B

Digital signature: A is a signer and B a verifier

RSA Signature*

Public key (n, e), where
• n, an integer, a product of two primes p

and q.
• e, an integer such that (e, φ(n)) = 1

Private key (n, d):
• d such that e⋅d ≡ 1 mod φ(n)

Signing: For message M and a hash function H
Sig (M) ≡ H(M)d mod n

Verification: For Sign(M), The verifier
computes H(M) and verify whether

H(M) ≡ Sig(M)e mod n

*Textbook version

Discrete Logarithm Problem

• Assume that G is a multiplicative subgroup of GF(p)* for prime p
• G is a cyclic group, G = {1, g, g2, g3, …,gq-1}, where q is a prime and g is

called a generator
– Given an integer x, 1< x <q, it is easy to compute gx ≡ y mod p (in GF(p))
– Given y ∈G, it is hard to find an integer x such that gx ≡ y mod p

• Using number field sieve method, the complexity of discrete log in GF(p) is
estimated by

exp ((c+o(1))(log p)1/3 (log log p)2/3)
• Since the operation is in a subgroup, it is also determined by the subgroup

size q. By Pohlig-Hellman algorithm, the complexity is in the square root of
q, 𝑞𝑞

• Discrete logarithm problem over elliptic curve groups can also be used for
PKC schemes
– A curve can be over GF(p) or GF(2q)
– An order n subgroup of EC(GF(p)) or EC(GF(2q)) is used, where n is a

prime

Diffie-Hellman Key Agreement
Diffie-Hellman Key Agreement

Alice and Bob can publically negotiate a set of
parameters, p, q, and g, where p and q are
primes and G is a q-order subgroup of GF(p)*
and g is a generator of G.

1. Alice randomly selects a, 1< a < q, and
computes

YA ≡ ga mod p
2. Bob randomly selects b, 1 < b < q and

computes
YB ≡ gb mod p

3. Alice and Bob exchange YA and YB
4. Alice computes

KA = (YB)a ≡ gba mod p
5. Bob computes

KB = (YA)b ≡ gab mod p
Without secret channel, Alice and Bob agreed on
a key K = KA = KB.

Alice Bob

ga

gb

K = (ga)bK = (gb)a

a, ga

b, gb

• Computational Diffie-Hellman problem
(CDH)

– Given G ⊂ GF(p)*, generator g, X ≡ gx, Y ≡ gy,
compute Z ≡ gxy mod p.

• Decisional Diffie-Hellman Problem (DDH)
− Given G ⊂ GF(p)*, generator g, X ≡ gx, Y ≡ gy,

and Z ∈ G, determine whether Z ≡ gxy mod p.

It is not proved that CDH (or DDH) is equivalent to
discrete logarithm.

PKC Applications and Standardizations

• Two classes of PKC schemes have been widely deployed
– Discrete log based (e.g. DH, DSA, ECDH, ECDSA)
– Integer factorization based (RSA encryption, RSA signature)

• NIST has specified digital signatures in FIPS 186-4, discrete log
based key agreement like DH in SP 800-56A, and RSA key transport
in SP 800-56B
– These standards are developed for government non-classified

applications
• The major schemes are standardized by many standard

organizations, ISO, IEEE, IETF, ANSI, etc.
• We have been relying on PKC to protect data in transmit and in

storage
– For protect Internet traffic as in Internet Key Exchange (IKE)
– For protect Internet applications as in Transport Layer Security (TLS)

Not Every Hard Problem Can Make a Good PKC
• Although the problem is hard to solve,

which provides one-wayness, it needs a
way to use some trapdoor (private
information) to generate the private key

• The mathematics structure needs to be
useable for a public key system to get a
“invertible” mathematical transmission

• It should have a manageable size for a
targeted security strength.

• To make the PKC system secure, worst case
to average case reduction is needed

– The notion of hard problems is based on
worst-case analysis alone, whereas not
every instance of a hard problem is
necessarily hard

– A cryptographic system based on a subclass
of a hard problem will not be secure if the
particular subclass turns out to be easy to
solve

• It is not always straightforward to base a
cryptosystem on a hard problem

112 bit security

RSA n ≥ 2048

DH p ≥ 2048 q ≥ 224

ECDH G in GF(p) |G|≥ 224

128 bit security

RSA n ≥ 3073

DH p ≥ 3072 q ≥ 256

ECDH G in GF(p) |G|≥ 256

RSA n ≥ 15360

DH p ≥ 15360 q ≥ 512

ECDH G in GF(p) |G|≥ 512

256 bit security

Hardness and Computing Power

• Moore’s law
– Over the history of computing hardware, the number of transistors in

a dense integrated circuit doubles approximately every 18 months
• The techniques in computing discrete log and factorization have been

continuously advanced
• As a result, in about 20 years

– RSA public key size has increased from 512 bits to 2048 bits
– Discrete log based system has increased the prime field modular p to

be at least 2048 bits and subgroup order q at least to be 448 bits
• Advanced computing power can make infeasible be feasible with respect

to certain key lengths

Quantum Computing Technology
• Quantum computing changed what we have believed infeasible

– On a quantum computer, to factor an integer n, Shor's algorithm runs in
polynomial time

O((log n)2(log log n)(log log log n))
– The discrete logarithm problem can be solved in the same scale of the

complexity
• With such results, all the public key cryptosystems deployed since 1980s

must be replaced with the quantum resistance counterparts in the
quantum computing time

• The first step is to look for proper hard problems which are
computationally infeasible to be solved even by quantum computers

Quantum Computing Resistant PKC

• Some hard problems are considered as quantum computing resistant and
also can be used to form public key cryptosystems, including
– Lattice based
– Multivariate
– Hash based*
– Coding based, and
– More

• Many different schemes have been proposed in each category
– Each of the schemes is based on a specific hard problem with respect

to quantum computing (i.e. quantum computing resistant)
• Most of the quantum computing resistant PKC schemes have appeared in

the past 10 years

Hard Problems – Lattice Based
• Different hard problems in lattice have been

used in constructing cryptosystems
– Classical hard problems

• Shortest Vector Problem (SVP)
– Given a basis, find a shortest vector

• Closest Vector Problem (CVP))
– Given a basis and a target vector t (or

a d-rank lattice L), find the closest
lattice point to t

– Approximation version of SVP and CVP
– Additional

• Decisional Shortest Vector Problem
(GapSVP)

• Bounded Distance Decoding (BDD)
• Small Integer Solutions (SIS)
• Shortest Independent Vector Problem

(SIVP)
• Learning With Errors (LWE)

• These problems are variants or special cases of
other lattice problems

• There exists reduction relations between some
of the problems

• Different lattice based crypto systems have been
built based on different hard problems

Lattice: Given a basis v1, v2, …, vn in Rn, the
lattice L = L (v1, v2, …, vn) is

{ v | v = a1v1+ a2v2 + … + anvn, ai in Z, i = 1, 2, …, n}

The length of v is defined as
||v||= (a1

2 + a2
2 + … + an

2)1/2

v1 v2 2v2-v1

2v2-2v1

Early Lattice-based Crypto Schemes

• Ajtai and Dwork (1995) described a lattice-based public key cryptosystem
– The security proof showed that every instance of the unique shortest

vector problem could be transformed into a random instance of their
cryptosystem with high probability

– It encrypts one bit for each operation, not practical
• Goldreich, Goldwasser, and Halevi (1996) proposed a more practical

lattice-based cryptosystem (GGH)
– GGH is fast, but requires megabyte-size public keys to be secure

 NTRU was presented in 1996 by Hoffstein, Pipher and Silverman, that only
requires RSA-sized keys, NTRU stands for
– “N-th degree truncated polynomial ring” or
– Number Theorists “R” Us

NTRUEncrypt

• It is typically described using the
ring of convolution polynomials
– Polynomial ring R = Z[X]/Xn-1,

where each element is an n-1
degree polynomial over Z

• Convolution products of
polynomials can also be expressed
as the multiplication with a
circulate matrix
– It is possible to describe NTRU

using lattices
– Its security is related to the

hardness of lattice problems in
a very special class of lattices

Public parameters n, p, q, where q > p

1. Randomly generate two polynomials f and
g in R

2. Computer fq
-1such that fq-1•f = 1 mod q

and fp
-1such that fp

-1•f = 1 mod p.

Public key: h = pfq
-1g mod q

Private key: f

Message m = m0+ m1x + … + mn-1xn-1

(-p/2 < mi < p/2, i = 0, 1, …, n-1)

Encryption: select r in R at random, the
ciphertext is

e ≡ r h + m mod q
Decryption: For ciphertext e, compute

a ≡ f e mod q
b ≡ a mod p

m ≡ f -1p b mod p

More on NTRU
• Its security is related to SVP in NTRU

lattice
• It is not provably secure, that is, it

cannot be proved that “breaking”
NTRUencrypt is equivalent to solving
SVP in NTRU lattice

• Its provably secure version is less
efficient

• Computationally, NTRUencrypt is a
pretty efficient scheme

• NTRU version of signature has had
multiple versions, after one version is
broken and then another
– Converting NTRUencrypt to a digital

signature is not as straight forward as
RSA

Security level n p q

112 bits 347 3 128

126 bits 503 3 256

NTRU Lattice

Public key h = h0+ h1x + … + hn-1xn-1

Let n x n matrix H is a cyclic matric with
C i(h0, h1, …, hn-1)T as the column 1, 2, …, n,
where C is cyclic shift operation

NTRU lattice is spanned by the columns of
2n x 2n matrix

In On

H qIn

where In is the n × n identity matrix and On is
the n × n all-zero matrix.

The Major Challenges

• Security analysis against traditional computers
– Is it secure to against cryptanalysis?

• Security analysis against quantum computers
– Will a new quantum algorithm solve the underlying problem?

• Performance assessment and improvement for practical
usage
– Proper key size, ciphertext size, and signature size

• Smooth migration to quantum resistant PKC schemes in
the existing applications
– Pursue drop-in replacement and interoperability

NIST PQC Research
• Security analysis against attacks

– Engage with crypto research community
– Focus on security of existing schemes
– Understand practical implications of various analysis results

• Prepare for quantum time cyber security
– Contribute to standard activities

• e.g. European Telecommunications Standards Institute (ETSI) white
paper “Quantum Safe Cryptography and Security - An introduction,
benefits, enablers and challenges”

– Hosted “Workshop on Cybersecurity in a Quantum World” April 2-3,
2015 in NIST Gaithersburg, Maryland

Conclusion

• Finding proper hard problems for
cryptographic usage is a hard problem

• The major challenge is to look for problems
infeasible to solve but feasible to be used to
form a cryptosystem

• As mathematicians, this is a fun area to
explore

	Feasibility & Infeasibility�- Hard problems for cryptography
	Hard Problems and Cryptography
	Cryptography
	Why Asymmetric Key IS Secure?
	Integer Factorization and RSA Cryptosystem
	Digital Signatures
	Discrete Logarithm Problem
	Diffie-Hellman Key Agreement
	PKC Applications and Standardizations
	Not Every Hard Problem Can Make a Good PKC
	Hardness and Computing Power
	Quantum Computing Technology
	Quantum Computing Resistant PKC
	Hard Problems – Lattice Based
	Early Lattice-based Crypto Schemes
	NTRUEncrypt
	More on NTRU
	The Major Challenges
	NIST PQC Research
	Conclusion

